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How mathematics confronts its paradoxes

Ladislav Kvasz 

Abstract.	Paradoxes	in	mathematics	show	surprisingly	many	common	features.	
The	paper	analyzes	the	historical	development	of 	the	language	of 	the	particular	
mathematical	theory	(i.e.,	algebra,	calculus,	and	predicate	logic,	respectively)	and	
argues	that	the	paradoxes	occur	at	a	particular	phase	of 	the	historical	development	
of 	the	language.	It	argues	that	the	paradoxes	exhibit	the	expressive	boundaries	
of 	the	language	of 	mathematics.	

Jak se matematika vypořádává se svými paradoxy. Paradoxy v matematice 
vykazují	překvapivě	mnoho	společných	rysů.	Tato	studie	analyzuje	historický	vý-
voj	jazyka	té	které	matematické	teorie	(algebry,	infinitesimálního	počtu,	případně	
predikátové	logiky)	a	dovozuje,	že	paradoxy	se	vyskytují	v	konkrétní	fázi	histo-
rického	vývoje	jazyka.	Ukazuje	se,	že	paradoxy	jsou	projevem	expresivní	hranice	
jazyka	matematiky.

Keywords:	paradox	●	language	of 	mathematics	

Probably the first attempt at a systematic interpretation of  the paradoxes in 
exact sciences was Kant’s Critique of  Pure Reason	[Kant	1781].	Kant	examined	
a	range	of 	issues,	such	as	the	question	of 	the	infinity	of 	the	extension	of 	space	
and	time,	their	divisibility	etc.	and	showed	that	all	efforts	to	answer	them	inevitably 
lead	to	paradoxes.	According	to	Kant	the	attempts	to	answer	these	questions	
lead	to	paradoxes	rising	from	the	fact	that	reason	is	thereby	exceeding	the	limits	
of 	its	competence,	which	extends	only	as	far	as	the	limits	of 	possible	experience.	
He	writes:	„…	the	principles	of 	pure	understanding	are	only	of 	empirical	but	
never	of 	transcendental	use;	and	it	follows	that	beyond	the	realm	of 	possible	
experience	there	can	be	no	synthetic	a	priori	principles	at	all.“	[Kant	1781,	p.	312].	
Kant’s	analysis	of 	the	antinomies	is	significant	in	several	respects.	On	the	one	

hand	Kant	shows	that	the	antinomies	are	not	accidental	mistakes	or	oversights	
but rather a systematic phenomenon that points toward an important feature of  reason 
itself.	„Transcendental	appearance,	however,	does	not	disappear,	even	if 	 it	 is	
revealed	and	its	nothingness	is	perfectly	recognized	by	means	of 	transcendental	
criticism. The reason for this is that our intellect contains the basic rules and 
maxims	of 	its	use,	which	look	just	like	objective	principles,	which	causes	that	
the subjective necessity of  a certain union of  our concepts in favor of  our 
understanding	is	taken	to	be	an	objective	necessity	determining	the	things	in	
themselves.	It’s	an	illusion,	which	cannot	be	avoided...“	[Kant	1781,	s.	236].
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In	addition,	it	is	interesting	that	Kant	interprets	the	antinomies	as	boundary	
phenomena;	as	a	result	of 	surpassing some boundaries,	in	this	case	the	boundaries	
of 	possible	experience.	Both	of 	these	characterizations	of 	antinomies	remain	
valid to this day.
Despite	these	undoubtedly	positive	insights	into	the	nature	of 	the	paradoxes	

Kant’s theory has also some problematic features. The first is that Kant does not 
consider paradoxes in mathematics but locates them only into physics (the antinomies 
of 	pure	reason),	psychology	(transcendental	paralogisms)	and	theology	(ideals	
of 	pure	reason).	It	is	strange,	because	the	work	of 	George	Berkeley	The Analyst 
or, a Discourse addressed to an Infidel Mathematician,	in	which	Berkeley	points	out	
the	paradoxes	in	Newton’s	theory	of 	fluxions	and	fluent,	was	published	in	1734,	
i.e. almost fifty years before Kant’s Critique of  Pure Reason.	Nevertheless,	what	
Berkeley	actually	showed	in	his	book	is	in	many	respects	analogous	to	what	
Kant wrote about the antinomies of  pure reason. 

The aim of  the present paper is it to show that paradoxes occur also in mathematics,	
and that the paradoxes in mathematics have both features by means of  which 
Kant	characterized	the	antinomies	of 	pure	reason:	they	are	systematic (i.e. not 
mere	mistakes	or	oversights)	and	they	relate to a boundary (i.e. the same practice 
applied	within	the	boundaries	does	not	lead	to	paradoxes).	The	existence	of 	
paradoxes in mathematics casts a shadow on Kant’s philosophy of  mathematics 
and	his	interpretation	of 	the	antinomies	as	resulting	from	the	efforts	of 	reason	
to	surpass	the	limits	of 	possible	experience.	In	mathematics	it	seems	more	natural	
to	see	the	paradoxes	not	as	a	result	of 	surpassing	the	limits	of 	possible	experience, 
but	the	boundaries	of 	some	symbolic	language.	I	will	therefore	tie	paradoxes	to	
the	boundaries	of 	language	and	not	the	limits	of 	possible	experience.	But	despite	
this	modification,	their	systematic	nature	and	relation	to	a	boundary	remains	
preserved.
So	we	come	to	another	peculiarity	of 	Kant’s	theory,	which	is	the	idea	that	the 

paradoxes cannot be removed.	„Therefore,	the	dialectical	theorem	of 	pure	reason	
must	be	different	from	all	sophistical	sentences	that	do	not	concern	any	questions, 
toss	with	just	any	faith	but	only	such,	which	must	necessarily	encounter	every	
human	mind	in	its	thinking;	and	secondly,	this	precept	with	its	antithesis	not	
only creates unnatural appearances that will disappear as soon as we look into 
it,	 as	well	as	natural	and	 inevitable	appearance	 that	 still,	 even	 though	he	 is	
no	longer	subject,	confusing,	although	it	does	not	lie,	and	which	can	therefore	
be disposed of  but can never be destroyed .... it must arise contradictions that 
can	not	be	avoided,	no	matter	what	we	do.“	[Kant	1781,	s.	283	a	284]. If 	we	
interpret	the	paradoxes	as	surpassing	the	boundaries	of 	a	certain	formal	language,	
then	a	reform	of 	that	language	can	open	up	a	possibility	to	eliminate	the	particular 
paradoxes.
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History of  mathematics provides a wealth of  examples that show how various 
paradoxes	appeared	in	mathematics,	and	how	mathematicians	created	technical	
means	of 	defense	against	them.	In	the	first	four	chapters	I	will	discuss	four	
paradoxes:	 the	 incommensurability	 of 	 the	 side	 and	 the	 diagonal	 of 	 a	 square,	
the casus irreducibilis	that	emerged	by	solving	cubic	equations,	the	paradoxes	of 	
the infinitesimal calculus and the paradox of  the set of  all sets.	In	all	four	cases	I	will	
try to interpret the paradox as encounters of  the boundaries of  the particular 
symbolic	language	(of 	arithmetic,	algebra,	the	calculus,	or	set	theory	respectively)	
and to show how mathematicians dealt with these paradoxes. (A broader historical 
context	of 	these	paradoxes	can	be	found	in	Kvasz	2008,	pp.	11–84.)

1. The boundaries of the language of  
arithmetic–incommensurability  
For	a	period	of 	several	centuries,	the	development	of 	mathematics	was	confined	
to practical issues of  economics and trade. Therefore the main mathematical 
discipline was arithmetic. The mathematical texts that have survived from ancient 
Egypt	and	Mesopotamia	are	collections	of 	practical	problems,	together	with	
solutions.	If 	a	problem	concerns	geometry,	the	text	usually	lacks	any	visual	image	
and	in	the	rare	cases	when	the	image	is	present,	it	is	not	clear	what	exactly	is	
represented.	In	ancient	Greece	for	the	first	time	we	encounter	geometrical	texts,	
in	which	the	particular	geometrical	objects	have	a	well	defined	form	and	the	
relations	among	them	have	the	character	of 	logical	necessity.	The	knowledge	of 	
geometry	was	according	to	tradition	brought	by	Thales	and	Pythagoras	from	Egypt. 
Nevertheless,	in	one	aspect	Greek	mathematics	differed	substantially	from	its	
predecessors	in	ancient	Egypt	and	Mesopotamia;	it	namely	contained	the	idea	
of  a proof. 
The	paradox	that	I	want	to	discuss	here	was	discovered	by	the	Pythagoreans.	

According	to	the	Pythagorean	doctrine	the	world	is	a	harmony	of 	opposites,	
and	the	essence	of 	this	harmony	is	expressed	by	numbers.	The	Pythagoreans	
associated	geometry	with	a	strange	kind	of 	“arithmetical	atomism”.	They	assumed 
that	every	line,	thus	also	the	side	and	diagonal	of 	a	square,	are	composed	of 	a	
number	of 	“units”,	and	so	the	ratio	of 	the	lengths	of 	these	lines	is	equal	to	the	
ratio	of 	the	number	of 	“units”	that	constitute	them.	In	this	way	the	opposites–
the	 long	and	the	short–are	 joined	 in	a	harmony,	expressed	 in	the	form	of 	a	
proportion of  numbers. The discovery of  the incommensurability of  the side 
and	the	diagonal	of 	a	square,	i.e.	of 	the	fact	that	the	ratio	of 	the	lengths	of 	
these	two	lines	cannot	be	expressed	as	a	ratio	of 	two	(integer)	numbers,	contradicts 
the	Pythagorean	philosophy.	The	Pythagoreans	considered	incommensurability	
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a	paradox.	I	suggest	that	the	incommensurability	of 	the	side	and	the	diagonal	
of  a square reveals the boundaries of  the language elementary arithmetic. 
The	proof 	of 	 the	 incommensurability	of 	 the	 side	 and	 the	diagonal	of 	 a	

square	is	based	on	Pythagoras’	Theorem.	Suppose	that	the	side	of 	the	square	
consists of  b	units	and	the	diagonal	of 	a	units.	From	the	Pythagorean	theorem	
we have a2 = b2 + b2. Thus for the numbers a and b we have 

    a2  =  2b2.	 	 	 	 	 	 	 	 	 (1)
From	this	relation	we	see	that	the	diagonal	a	is	greater	than	the	side	b,	and	so	
we can write    a  =  b + c.		 	 	 	 	 (a)
The number c	is	the	difference	that	we	get	when	we	subtract	from	the	diagonal a 
the side b.	When	we	substitute	this	latter	relation	into	the	former	one,	we	get

    (b + c)2  =  2b2.
Using	simple	transformations	we	get

    b2  = 2bc + c2.		 	 	 		 	 	 	 	 	 (2)
This means that the number b2	is	greater	than	2bc,	which	means	(after	dividing	the	
two numbers by b),	that	b	is	greater	than	2c.	Therefore,	we	can	write

    b  =  2c + d,	 	 	 	 	 	 	 	 	 (b)
where d	is	again	the	difference	obtained	by	subtracting	2c from b.
The	reader	is	probably	already	getting	bored,	but	now	comes	the	point.	When	

we substitute this expression of  the number b	into	the	equation	(2)	we	obtain
     (2c + d)2  =  2(2c + d)c	+	c2.

Using	a	simple	multiplication	we	get
     4c2 + 4cd + d2  =  4c2 +2cd + c2.

When	we	subtract	from	both	sides	of 	the	equation	the	equal	terms,	we	obtain
     c2  =  2cd + d2.	 	 	 	 	 	 (3)

And	we’re	done.	The	Pythagorean	doctrine	is	refuted!!!
Why?	We	have	to	realize	what	we	have	got.	The	relation	(3)	is	exactly	the	

same	as	(2),	that	is,	more	precisely;	the	numbers	b and c are in the same relation 
as the numbers c and d.	Thus,	the	method	of 	antiphareisis,	as	it	was	called,	cannot	
terminate.	Remember	what	we	were	doing.	We	have	always	subtracted	from	the	
longer	segment	(single	or	double)	multiple	of 	the	shorter.	If 	the	original	segments 
had a common measure s (i.e. if  a = ms  and b = ns)	then	by	repeated	subtraction	
of 	the	shorter	segment	from	a	longer	one,	as	we	have	done	it,	we	would	have	
reached	the	stage	when	the	last difference would be exactly equal to the common 
measure s	of 	the	original	segments.	But	that	would	mean	that	the	penultimate	
difference would be a multiple of  this last difference s and so no new remainder 
would	emerge,	 and	our	method	would	 reach	 its	 end.	Thus	 the	method	of 	
antiphareisis	 is	a	method	for	finding	the	common	measure	of 	two	segments	
(or	 the	 common	divisor	 of 	 two	numbers,	which	was	 for	 the	Pythagoreans	
essentially	the	same,	because	they	believed	that	every	segment	is	a	number).	
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The discovery of  incommensurability means that the method of  antiphareisis breaks 
down.	One	of 	 the	pillars	on	which	 the	Pythagorean	 theory	of 	numbers	was	
built,	collapsed.	

Within the framework of  elementary arithmetic the incommensurability of  
the	side	and	the	diagonal	of 	a	square	is	a	paradox	that	defies	comprehension.	
The	Pythagoreans	called	it	kai alogon kai aneidon,	ineffable	and	inconceivable.	Only	
when	in	the	17th	century	mathematicians	abandoned	the	Euclidean	definition	
of 	number	as	a	multitude	of 	units	and	began	to	consider	the	real	numbers,	it	
became possible to turn the incommensurability into the positive fact that 2  
is	an	irrational	number.	Here	we	see	one	of 	the	basic	strategies	of 	overcoming	
paradoxes:	 through	extension	of 	 language	we	 turn	a	paradox	 into	a	positive	
fact.	In	our	case,	we	introduce	the	number	 2 	that	expresses	the	length	of 	the	
diagonal	of 	the	unit	square	and	the	paradox	is	gone.	We	will	meet	this	strategy	
in	the	following	text	several	times.

The reader who knows the standard indirect proof  of  the incommensurability 
of 	 the	side	and	 the	diagonal	 that	can	be	written	 in	 three	 lines	may	ask	why	
I	instead	presented	the	proof 	that	uses	antiphareisis. The reason is that it is likely 
that	this	is	the	form	in	which	incommensurability	was	originally	discovered	
(probably	 instead	of 	 the	 square	 it	was	with	 the	pentagon).	There	 is	 also	 a	
philosophical	reason,	because	the	method	of 	antiphareisis	is	similar	to	the	form,	
in	which	Kant	presents	his	antinomies.	Here,	just	like	in	the	case	of 	extension	
or	divisibility	of 	space	we	are	confronted	with	the	thesis	and	antithesis,	asserting	
that some process will terminate or not.

2. The boundaries of the language  
of algebra–the casus irreducibilis
The	 reconquista	 of 	 Toledo	 in	 1085	 opened	 to	 the	 European	 scholars	 the	
opportunity to become acquainted with several works of  Greek and Arabic 
mathematics	from	the	Arabic	manuscripts.	In	1142	Euclid’s	Elements have been 
translated	into	Latin,	and	in	1145	the	Short book on algebra and al-muqábala from 
Abu Abdullah Muhammad ibn Músa	al-Chwárizmí.	The	habit	to	formulate	the	
solution of  a problem in the form of  verbal rules that was so characteristic for 
the	work	of 	al-Chwárizmí	lasted	well	until	the	16th	century.	Thus	also	the	first	
result	of 	European	mathematics	that	surpassed	the	knowledge	of 	the	ancient	
world,	was	written	 in	 this	 form.	 It	was	 the	 solution	 of 	 the	 cubic	 equation,	
published	in	1545	in	the	book	Ars Magna Sive de Regulis Algebracis	by	the	Italian	
mathematician	Girolamo	Cardano.
Cardano	formulated	the	cubic	equation	as:	“De cubo et rebus aequalibus numero” 

where cubo is derived from cubus,	meaning	the	third	power	of 	the	unknown;	rebus 
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is derived from res,	meaning	 the	 first	power	of 	 the	unknown;	 and	numero is 
derived from numerus,	meaning	is	the	member.	Cardano	gives	the	solution	of 	
this	equation	in	the	form:	„Cube	one-third	of 	the	number	of 	things;	add	to	it	
the	square	of 	one-half 	of 	the	number;	and	take	the	square	root	of 	the	whole.	
You	will	duplicate	this,	and	to	one	of 	the	two	you	add	one-half 	the	number	
you have already squared and from the other you subtract one-half  the same. 
You	will	then	have	binomium and its apotome.	Then	subtracting	the	cube	root	of 	
the apotome from the cube root of  the binomium,	that	which	is	left	is	the	thing.“
Here	“to	duplicate”	means	to	write	two	times	the	same	next	to	each	other	

and	the	words	“binomium”	and	“apotome”	refer	to	certain	algebraic	expressions.	
In	order	to	allow	the	reader	to see	what	Cardano	was doing,	I	write	down	the	equation 
using	today’s	symbols	as		x3 + bx = c	and	its	solution	given	by	the	formula:

      x  =  3

32

3

32

322322






+






+--






+






+

bccbcc .	 	 	 	 	 	 (4)

In	Cardan’s	times	there	were	no	formulas	and	Cardano	used	exclusively	the	
verbal	form.	He	illustrated	his	general	rule	on	a	particular	equation x3 + 6x = 
20,	the	solution	of 	which	he	writes	as:

„RV: cub: R: 108 p: 10 m: RV: cub: R: 108 m: 10“
where RV is radix universalis;	cub	indicates	that	the	root	is	of 	the	third	degree;	
R is radix;	p stands for plus;	m for minus.	Cardano	was	not	able	to	express	the	
coefficients	of 	the	equation	in	a	general	form.	The	formula	refers	to	a	solution	
of 	a	particular	equation.	In	our	symbolism	it	has	the	form:

108 10 108 103 3+ - - .

On	the	one	hand,	the	solution	of 	the	cubic	equation	is	a	landmark	of 	the	
development of  European mathematics. Their solution is the first result of  
Western	mathematics	that	surpassed	the	level	of 	the	ancient	heritage.	Thus,	
the	year	1545	can	be	seen	as	the	first	date	when	we	knew	something	Euclid,	
Archimedes	or	Apollonius	did	not	know.	On	the	other	hand,	the	solution	of 	
the	cubic	equation	led	to	a	paradox.	Cardano	discovered	the	paradox	by	trying	
to	solve	the	equation	of 	the	type	“De	cubo	aequali	rebus	et	numero”	what	in	
our symbolism means x3 = bx + c. The reason for the need to differentiate 
various	types	of 	equations	was	that	the	mathematicians	of 	the	16th	century	did	
not	know	negative	numbers.	Cardano	found	for	the	equation x3 + bx = c a rule 
analogous	to	the	previous	ones.	I	will	not	present	it	in	its	original	verbal	form,	
but	only	its	transcription	into	modern	symbolism:
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          x  =  c c b c c b
2 2 3 2 2 3

2 3
3

2 3
3+ 
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+ - 





- 





.		 	 	 	 	 (5)

When	we	compare	this	formula	with	the	one	above,	we	find	that	what	has	
changed	is	only	that	a	few	occurrences	of 	+	were	replaced	by	–	and	vice	versa.	
So	below	the	square	root	the	sum	was	replaced	by	difference.	Nevertheless,	this	
tiny	change	has	far-reaching	consequences.	If 	we	take	a	particular	equation,	for	
instance the x3 = 7x	+	6,	which	was	considered	also	by	Cardano,	we	can	see,	
that one of  its solution is x = 3 (the other two solutions x = -1	and	x = -2 
were	 not	 considered	 in	Cardano’s	 times).	However,	 when	we	 substitute	 the	
coefficients b = 7 and c	 =	 6	 into	 formula	 (5),	 we	 obtain	 something	
incomprehensible–below	the	sign	of 	the	square	root	a	negative	number	occurs:

33

27
1003

27
1003 --+-+=x .

Cardano	called	this	casus irreducibilis,	the	unsolvable	case.	In	retrospect,	this	
is	probably	the	first	complex	number	in	the	history	of 	mathematics.	It	resembles	
the	discovery	of 	the	incommensurability	of 	the	side	and	the	diagonal	of 	a	square.	
In	both	cases	we	are	confronted	with	the	limits	of 	language.	The	language	(of 	
arithmetic	or	of 	algebra)	is	faced	with	a	situation	in	which	it	fails.	In	the	case	of 	
the casus irreducibilis	some	terms	arise	which,	strictly	speaking,	do	not	make	sense.	
And the therapy is also similar to that in the previous case—we must extend the 
universe	of 	numbers.	When	we	include	complex	numbers	 into	our	universe,	
the	square	root	of 	a	negative	number	will	no	longer	pose	any	problem,	just	like	after	
including	the	irrational	numbers	the	 2 	posed	no	problems.	For	Cardano,	however,	
who	discovered	this	paradox,	the	casus irreducibilis	was	a	mysterious	phenomenon,	
and	it	was	necessary	to	wait	almost	two	hundred	years,	until	complex	numbers	
were	sufficiently	understood	so	that	the	square	roots	of 	negative	numbers	were	
accepted	as	genuine	quantities.	(A	more	detailed	reconstruction	of 	the	development 
of 	algebra	is	in	Kvasz	2006.)
It	seems	that	also	this	case	can	be	brought	under	the	umbrella	of 	Kant’s	

account	of 	the	paradoxes.	At	least	in	the	period	between	1545	(when	Cardano	
discovered	‘the	first	complex	number’)	and	1799	(when	Gauss	introduced	the	
complex	plane)	mathematicians	were	confronted	with	the	irresistible	temptation	
to	work	with	complex	numbers	as	if 	they	were	objects	(i.e.	transcendently	real),	
even	though	they	were	not	able	to	explain	what	they	really	are	(i.e.	construct	
them	within	the	limits	of 	possible	experience).	The	appeal	of 	Gauss’	construction 
of 	the	complex	plane	is	precisely	that	it	gave	complex	numbers	a	model	within	
the	empirical	realm.	So	we	have	all	the	Kantian	components	of 	an	antinomy–

2727
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their systematic nature,	their	relation	to	some	boundary (in this case the boundary 
separating	 the	positive	numbers	 from	 the	negative	ones)	 and	 their	 irresistible 
nature.

3. The boundaries of the language of the calculus 
The	paradoxes	of 	differential	and	integral	calculus	are	in	many	ways	analogous	
to	the	previous	examples.	Newton	in	a	letter	from	1714	writes:	“Fluxions	and	
moments	are	quantities	of 	different	kind.	Fluxions	are	final	movements,	while	
moments	are	infinitely	small	parts.	I	use	letters	with	dots	to	indicate	fluxions	
and multiply the fluxion with the letter o,	to	make	  them	infinitely	small.	In	proofs	
of 	theorems	I	always	write	the	letter	o,	and	I	proceed	by	the	methods	of 	Euclid’s	
geometry	without	any	approximations.	In	calculations	I	make	approximations	
of 	the	most	varied	kinds,	and	sometimes	I	omit	o.”

Newton called fluxion	what	we	now	call	 the	derivative	of 	a	 function,	and	
thus	it	is	a	finite	quantity	that	characterizes	the	speed	with	which	the	original	
quantity	 (that	 he	 called	 fluent)	 changes.	 In	 contrast,	 he	 called	 moment the 
infinitesimal	increment	of 	a	quantity,	and	so	it	is	infinitely	small.	The	moment of  
a quantity			(or	of 	a	function	or	of 	a	fluent)	y is equal to the product  oy  of  its 
fluxion y ,	which	indicates	how	quickly	the	quantity	y	changes	in	time	with	the	
infinitely short moment of  time o,	during	which	the	moment	appeared.	As	an	
illustration,	we	can	present	Newton’s	calculation	of 	the	derivative	of 	the	fluent	–	x3. 
In	Newton’s	notation	this	procedure	is	as	follows:

    y x= 3 	 	 	 	 	 	 	 	 	 	 (6)

   ( )3oxxoyy  +=+
   oooxxxooxxxoxxxoyy  +++=+ 33 23 	 	 	 	 	 	 (7)

We	can	use	(6)	to	get	rid	of 	the	finite	terms	and	then	divide	both	sides	by	o. 
We	thus	obtain:

   ooxxxoxxxxxy  ++= 33 2 	 	 	 	 	 	 	 	 (8)

   



  

y
x

x xxo xxoo= + +3 32 	 	 	 	 	 	 	 	 (9)

   23x
x
y
=




	 	 	 	 	 	 	 	 (10)

In	the	last	step	we	neglected	the	infinitely	small	quantities	that	contained	o. 
Newton	thus	received	the	correct	result;	the	derivative	of 	the	function	 y x= 3  
is indeed y = 3x2.

ooxxxoxxxxxy  ++= 33 2
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The	calculation	of 	the	derivative	using	Leibniz’s	notation	is	practically	the	
same.	In	a	letter	of 	1716	Leibniz	wrote:	“When	our	friends	in	France	disputed,	
I	testified	to	them	that	I	do	not	believe	that	there	actually	are	some	infinitely	
large	or	infinitely	small	quantities.	The	letter	d,	just	like	the	imaginary	roots	in	
algebra,	are	just	fiction	that,	nevertheless,	can	be	used	for	brevity	or	when	we	
want	to	speak	generally.”	The	above	quotations	indicate	some	doubts	of 	the	
founders	of 	the	differential	and	integral	calculus	according	the	nature	of 	quantities,	
which they used in their calculations.
George	Berkeley	presented	a	witty	criticism	of 	the	differential	and	integral	

calculus in his book The Analyst, or a discourse addressed to an Infidel Mathematician 
that	appeared	in	Dublin	in	1734.	In	his	book	Berkeley	makes	a	parody	of 	Newton’s	
theory of  fluxions and fluents (but all his objections apply with equal force to 
Leibniz’s	theory,	based	on	the	use	of 	differentials).	Berkeley	shows	that	the	calculus	
is	based	on	a	logical	error.	Fortunately,	not	a	single	one	but	on	a	multitude	of 	
errors,	which	compensate	each	other	so	that	the	calculus	eventually	brings	us	to	the	
correct	result.	Berkeley	here	refers	to	Newton’s	method	described	above,	in	which	
during	the	calculation	a	certain	quantity	is	considered	as	different	from	zero,	so	
that	we	could	divide	by	it	(in	the	transition	from	the	line	(7)	to	(8)	we	divided	
by the quantity o).	After	the	successful	completion	of 	these	divisions	we	put	
this	quantity	equal	to	zero	(in	the	transition	from	the	line	(9)	to	(10)).	Berkeley	
correctly objects that a variable either is equal to zero,	but	then	it	is	equal	to	zero	
throughout	the	entire	calculation	and	thus	it	is	not	possible	to	divide	by	it,	or	it	
is not equal to zero,	but	then	it	is	not	equal	to	zero	throughout	the	entire	calculation	
and	so	it	cannot	be	ignored	at	the	end.	So,	according	to	Berkeley	the	differential	
calculus	is	all	mistaken.	That	it,	nevertheless,	leads	to	correct	results,	is	possible	
only due to compensation of  errors. 

Berkeley’s criticism of  the differential calculus pointed to the insufficient 
justification	of 	 the	 formal	methods,	on	which	 the	differential	calculus	was	
built.		The	efforts	to	create	foundations	of 	the	calculus	span	the	entire	18th and 
19th centuries. One of  the most important attempts to build the calculus on solid 
foundations	was	presented	by	Augustin	Cauchy	in	his	famous	Cours de l’Analyse 
from	1821.	Cauchy	found	a	way	 to	exclude	Newton’s	 fluxions	and	Leibniz’s	
differentials from the calculations and to base the entire analysis on the concept 
of 	limit.	When	he	tried	to	justify	the	concept	of 	limit,	however,	Cauchy	turned	
to	 the	 properties	 of 	 the	 real	 line.	 It	 seems	 that	 the	 criticism	 presented	 by	
Berkeley	really	revealed	the	boundaries	of 	the	language	of 	the	differential	and	
integral	calculus,	because	almost	all	attempts	to	answer	his	criticism	turned	to	
some	other	language.
Here	we	are	dealing	with	a	strategy	to	confront	a	paradox	that	is	different	

from	the	strategy	adopted	in	the	case	of 	the	incommensurability	or	the	casus 
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irreducibilis.	Mathematicians	like	Cauchy,	Bolzano,	or	Weierstrass	have	not	tried	
to	enrich	the	language	of 	the	differential	and	integral	calculus	by	some	new	kind	
of 	quantities	(even	though	the	strategy	of 	extending	the	realm	of 	numbers	was	
eventually	also	successful,	but	only	in	1962,	when	Abraham	Robinson	proposed	
his Nonstandard analysis).	 Instead	of 	 an	extension	of 	 the	 system	of 	numbers	
mathematicians shifted the problem of 	the	foundations	of 	differential	and	integral	
calculus	on	the	shoulders	of 	some	other	theory–the	theory	of 	real	numbers.	
Around	 1872	Dedekind,	Weierstrass,	 and	Cantor	 independently	 proposed	 a	
construction	of 	 real	numbers	 and	 started	 the	process	of 	 arithmetization	of 	
mathematical	analysis.	The	constructions	of 	Dedekind,	Weierstrass,	and	Cantor,	
however,	have	one	fundamental	weakness.	They	assumed	the	existence	of 	an	
actually	 infinite	 set	of 	objects	 (in	Dedekind’s	 construction	 it	was	 the	 set	of 	
all	rational	numbers,	in	the	case	of 	Cantor	and	Weierstrass	it	was	the	set	of 	all	
sequences	of 	rational	numbers).	Even	if 	the	assumption	of 	the	existence	of 	
all	rational	numbers	seems	harmless,	some	mathematicians	considered	the	problem	
of 	grasping	an	actually	infinite	set	of 	objects	as	not	clear	enough.	
Therefore	Dedekind	(1888),	Peano	(1889)	and	Frege	(1893),	again	independently,	

offered three alternative constructions of  the system of  all natural numbers as 
the	canonical	infinite	system	of 	objects.	So	around	1890	a	second	shift of  the 
problem	of 	foundations	of 	the	differential	and	integral	calculus	occurred.	Now	
the	foundation,	on	which	the	building	of 	the	mathematical	analysis	should	be	
erected,	was	arithmetic	of 	natural	numbers.	It	seemed	that	this	time	the	work	
started	at	the	beginning	of 	the	century	by	Cauchy,	finally	reached	its	completion,	
and the strategy of  shifting of  the problem of  foundations was crowned with success. 
But	suddenly	some	logical	paradoxes	emerged	and	the	entire	building	collapsed.	
It	seems	that	the	strategy	of 	gradual	shifting	of 	the	problem	of 	foundations	

is	not	as	effective	in	dealing	with	paradoxes	as	the	strategy	of 	extending	the	
language.	However,	by	each	such	shifting	the	problem	gets	imbedded	into	a	new	
context	and	so	each	shift	allows	its	deeper	analysis	and	better	understanding.	
From	the	very	beginning	it	was	clear	that	the	problem	of 	the	foundations	of 	
the	 calculus	has	 something	 to	do	with	 the	 infinite,	 but	 the	 successive	 shifts	
of  the problem clarified in what respect the concept of  infinity is involved in 
the foundations of  the calculus. As many of  the Kantian antinomies were also 
tied	to	the	infinity,	I	think	it	is	plausible	to	include	also	this	paradox	among	
the examples of  paradoxes in mathematics that illustrate Kant’s notion of  
an antinomy.
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4. Boundaries of the language of predicate calculus 
One	of 	the	first	logical	paradoxes	was	discovered	in	1901	by	Bertrand	Russell	
in	 Frege’s	 system	 of 	 the	 foundations	 of 	 arithmetic	 from	 1893.	 Frege	 was	
surprised by the appearance of  a paradox in his theory and pointed out that the 
same	paradox	occurs	also	in	Dedekind’s	system	of 	the	foundations	of 	arithmetic	
from	1888.	This	observation	of 	Frege	can	be	supplemented	by	a	note	that	the	
same	paradox	can	also	be	derived	in	Peano’s	system	[see	Gillies	1982,	p.	83–93].	
This shows that these paradoxes are not the result of  some mistakes made by 
the mentioned authors. Their systems are conceptually so different that the 
occurrence	of 	the	same	paradox	in	all	of 	them	marks	rather	the	logical	boundaries	
of 	the	language	of 	mathematics.	The	problem	was	that	all	three	used	quantification	
over	classes	(i.e.	from	our	point	of 	view	second-order	 logic).	The	paradoxes	
arise as a result of  the ‘careless’ use of  second-order quantification.
The	simplest	formulation	of 	the	paradox	that	appeared	in	the	works	of 	Frege,	

Dedekind,	and	Peano	can	be	given	in	the	language	of 	set	theory.	A	detailed	analysis	
of	the	paradox	can	be	found	in	the	book	[Gillies	1982],	where	a	comparison	of 	the	
formulations	of 	the	paradox	in	all	three	systems	is	presented.	In	the	language	
of  set theory this paradox is usually formulated as the paradox of  the set of  all sets 
(that	do	not	contain	themselves	as	element).	Assume	thus	that	M	is	a	set	consisting	
of  all those sets that do not contain themselves as an element. Formally written

    M = {x;		x∉x}.
Let us ask the question whether the very set M contains itself  as an element? 

We	do	not	know,	so	let’s	consider	both	alternatives.
Assume that M	is	its	own	element,	i.e.	M∈M.	If 	M is an element of  the set 

M,	it	must	satisfy	the	condition	that	is	true	of 	all	elements	of 	the	set	M,	namely	
that x∉x. When we substitute M for the variable x,	we	get	M∉M. Thus M is 
not	the	element	of 	itself,	what	contradicts	the	assumption.

Assume therefore that M	is	not	its	own	element,	i.e. M∉M. This means that 
M	satisfies	the	condition	by	means	of 	which	we	determine	whether	a	set	belongs	
to M	or	not,	namely	the	condition	x∉x.	Given	that	M	satisfies	this	condition,	
it must be included in M,	because	M	contains	all	the	sets	that	satisfy	this	condition,	
and thus we obtain that M∈M,	what	contradicts	what	we	have	assumed.

We see that whether we assume of  set M that it is an element of  itself  or 
not,	in	both	cases	we	obtain	a	contradiction.	This	paradox	may	at	first	glance	
seem	an	artificial	trick.	It	may	seem	that	the	set	M was created just to construct 
the	paradox,	but	no	one	would	ever	dream	of 	doing	such	a	thing.	Nevertheless,	
this	impression	is	wrong.	Russell	found	this	paradox	in	the	system	of 	Frege,	
and	Frege	found	 in	 the	system	of 	Dedekind,	and	finally	 it	 turned	out	 that	
it	occurs	also	 in	 the	system	of 	Peano.	Thus	 it	 is	not	an	artificial	 trick,	but	
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a consequence of  the fundamental principles on which the foundations of  
arithmetic proposed by the three mentioned mathematicians were built.
The	logical	paradoxes	are	interesting	because	in	their	overcoming	we	can	find	

a	third	strategy	of 	dealing	with	a	paradox.	Besides	the	strategy of  language extension,	
used in the case of  the incommensurability and the casus irreducibilis,	leading	to	the	
introduction	of 	the	irrational	and	the	complex	numbers,	and	the	strategy of  shifting 
the problem	that	was	used	in	the	case	of 	the	calculus,	where	the	problems	concerning	
the	infinitely	small	quantities	were	gradually	moved	into	arithmetic,	here	we	are	
dealing	with	something	that	can	be	described	as	the	strategy of  suppressing the paradox. 
The	first	version	of 	this	strategy	was	presented	in	1908	by	Ernst	Zermelo,	who	
created	the	first	axiomatic	system	of 	set	theory.	In	building	his	system	Zermelo	
restricted	the	language	of 	set	theory	so	that	sets	similar	to	the	set	M could not 
be	defined	in	the	language.	It	is	a	kind	of 	political	correctness	where	we	believe	
that	a	problem	disappears	when	the	language	does	not	enable	its	formulation.	

5. Concluding remarks
As	a	first	interesting	result	of 	our	analysis	we	can	take	the	discrimination	of 	
three	strategies	how	mathematicians	respond	to	paradoxes:	the	strategy	of language 
extension,	the	strategy	of shifting the problem,	and	the	strategy	of suppressing the paradox. 
In	 the	 last	 one	 it	 is	 not	difficult	 to	 recognize	Lakatos’	monster	barring	 and	
exception	barring	method.	Nevertheless,	it	seems	that	the	other	two	strategies	
were	not	analyzed	by	Lakatos.	So	it	could	be	interesting	to	confront	the	Kantian	
theory of  antinomies with the Lakatosian theory of  Proofs and Refutations (for 
more	details	see	Kvasz	2002).
As	I	said	at	the	beginning,	according	to	Kant	there	is	a	fundamental	difference	

between	mathematics	and	physics	consisting	in	the	fact	that	there are no paradoxes 
in mathematics,	while	in	physics	their	occurrence	cannot	be	avoided.	I	assume	that	
the	above	text	casts	doubt	on	this	view.	It	shows	that	mathematics	is	exposed	
to	paradoxes	to	at	least	the	same	extent	as	physics.	It	is	an	open	question	whether	
the	paradoxes	 that	 I	have	described	 in	previous	 chapters	 can	be	 interpreted	
as	phenomena	analogous	to	the	Kantian	antinomies.	I	believe	they	can.	In	all	
above	mentioned	paradoxes	we	could	find	those	features,	by	means	of 	which	
Kant	characterized	his	antinomies,	namely	their	systematic	nature	and	that	on	
the road towards the paradox certain rule that works well in a limited area (of  
possible	experience),	was	used	in	an	unlimited	way.	The	tendency	to	use	the	
rule for the cubic equation of  the kind Cubo aequali rebus et numero	in	all	cases,	or	to 
apply	the	rules	of 	quantification	also	to	classes,	lies	in	the	nature	of 	reason	itself.	
It	is	the	tendency	to	pass	from	the	conditional	to	the	unconditional,	on	which	
Kant bases his analysis of  the antinomies. 
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So it seems that there is a problem within Kant’s philosophy of  mathematics. 
I	believe	that	if 	we	stop	separating	mathematics	from	physics	as	Kant	did	and	
start	to	base	its	philosophy	on	language	instead	of 	perception,	it	will	be	possible	to 
preserve	several	of 	the	insights	by	which	Kant	enriched	the	philosophy	of 	exact	
sciences. Mathematics can be thus incorporated into his analysis of  antinomies of 
pure	reason.	For	an	orthodox	Kantian	such	an	approach	is	probably	unacceptable,	
but	it	is	questionable	whether	making	Kant’s	philosophy	a	sterile	corpse	exposed	
in	the	showcases	of 	the	museum	of 	the	history	of 	Western	thought	is	the	only	
way how to deal with it.
Another	 question	of 	wider	 significance	 is	 the	problem	 that	 according	 to	

Kant	the	antinomies	belong	to	the	very	nature	of 	reason	and	thus	they	cannot 
be removed. As shown by the development of  physics the antinomies can indeed 
be removed. Let us take for example the antinomy of  finiteness versus infinity of  
space. General theory of  relativity eliminated this antinomy when it replaced the 
Euclidean	space	of 	Newtonian	physics	by	the	curved	space-time.	For	general	
theory	of 	relativity	Kant’s	antinomy	does	not	work;	the	question	whether	space	
is	finite	or	infinite	is	not	a	speculative	problem.	It	is	an	empirical	question	that	
depends on the distribution of  matter in the universe. 
Nevertheless,	Kant’s	antinomies	do	not	lose	their	significance.	They	should	

be	qualified	with	respect	to	the	language	of 	the	theory	in	which	the	antinomy	
is	 formulated.	Thus	I	suggest	 interpreting	 the	antinomy	of 	 finiteness	versus	
infinity	of 	space	as	pointing	to	the	external character of  space in Newtonian physics 
(that	was	first	noticed	by	Mach).	This	antinomy	is	thus	not	a	characteristic	feature	
of 	human	reason,	but	of 	language.	And	not	of 	language	as	such,	but	of 	the	
language	of 	Newtonian	mechanics.	The	antinomy	of 	finiteness	versus	infinity	
of  space can be therefore interpreted as an indication of  the boundaries of  the 
language of  Newtonian physics	(for	more	details	see	Kvasz	2013).	This	is	actually	
the	form	in	which	I	described	all	 the	paradoxes	 in	mathematics.	And	in	this	
form Kant’s antinomy of  finiteness versus infinity of  space retains its validity 
and	tells	something	fundamental	about	the	nature	of 	Newtonian	physics.
Of 	course,	for	Kant	Newtonian	physics	was	the	only	physics	that	he	knew,	

and	so	the	boundaries	of 	its	language	appeared	to	him	as	limits	of 	physics	as	
such,	and	actually	as	limits	of 	the	human	reason.	As	we	today	have	a	number	
of  fundamental physical theories (such as the theory of  relativity or quantum 
mechanics),	it	is	easier	for	us	to	see	that	the	antinomies	studied	by	Kant	are	in	
fact	related	to	one	specific	theory,	namely	Newtonian	mechanics	and	thus	they	
have	nothing	to	do	with	reason	as	such.	And	physics	faces	these	antinomies	in	
very	the	way	as	mathematics	(described	in	the	previous	chapters),	namely	with	
a	change	of 	language.
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Summary
Paradoxes in mathematics such as the casus irreducibilis	 [Cardano	 1545],	 the	
paradoxes	of 	the	calculus	[Berkeley	1734]	or	Russell’s	paradox	[Russell	1903]	
show	surprisingly	many	common	features.	It	is	possible	to	see	these	paradoxes	
as	linguistic	phenomena	occurring	at	a	specific	stage	in	the	development	of 	the	
particular	theory.	It	seems	that	even	though	each	paradox	taken	in	isolation	is	
well	understood,	 the	paradoxes	as	a	general	phenomenon	still	 lack	sufficient	
historical	analysis.	The	paper	analyzes	the	historical	development	of 	the	language	
of 	the	particular	mathematical	theory	(i.e.,	algebra,	calculus,	and	predicate	logic,	
respectively)	and	argues	that	the	paradoxes	occur	at	a	particular	phase	of 	the	
historical	development	of 	the	language;	it	characterizes	that	stage	as	the	stage	
when	in	the	language	we	begin	to	construct	representations	of 	representations.	
It	argues	that	the	paradoxes	exhibit	the	expressive	boundaries	of 	the	language	
of 	mathematics	as	 introduced	 in	 [Kvasz	2008].	That	 is	why	 these	paradoxes	
exhibit	several	common	features–they	correspond	to	the	same	epistemological	
phenomenon,	namely	expressive	boundaries	of 	language.
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Resumé
Paradoxy v matematice jako casus irreducibilis	[Cardano	1545],	paradoxy	infinitesi-
málního	počtu	[Berkeley	1734]	nebo	Russellův	paradox	[Russell	1903]	vykazují	
překvapivě	mnoho	společných	rysů.	Je	možné	na	ně	nahlížet	jako	na	lingvistic-
ké	fenomény	vyskytující	se	v	určitém	stavu	vývoje	konkrétní	teorie.	I	když	je	
každý	výše	uvedený	paradox	 sám	o	 sobě	dobře	prostudován,	paradoxy	 jako	
obecný	fenomén	stále	postrádají	dostatečnou	historickou	analýzu.	Tato	studie	
analyzuje	historický	vývoj	jazyka	té	které	matematické	teorie	(algebry,	infinite-
simálního	počtu,	případně	predikátové	logiky)	a	dovozuje,	že	paradoxy	se	vy-
skytují	v	konkrétní	fázi	historického	vývoje	jazyka;	charakterizuje	tuto	fázi	jako	
takovou,	v	níž	v	jazyce	začínáme	vytvářet	reprezentace	reprezentací.	Ukazuje	
se,	že	paradoxy	jsou	projevem	expresivní	hranice	jazyka	matematiky,	zavedené	
v	[Kvasz	2008].	Proto	paradoxy	vykazují	společné	rysy	–	korespondují	s	týmž	
epistemologickým	fenoménem,	především	s	expresivními	hranicemi	jazyka.
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