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How mathematics confronts its paradoxes

Ladislav Kvasz 

Abstract. Paradoxes in mathematics show surprisingly many common features. 
The paper analyzes the historical development of  the language of  the particular 
mathematical theory (i.e., algebra, calculus, and predicate logic, respectively) and 
argues that the paradoxes occur at a particular phase of  the historical development 
of  the language. It argues that the paradoxes exhibit the expressive boundaries 
of  the language of  mathematics. 

Jak se matematika vypořádává se svými paradoxy. Paradoxy v matematice 
vykazují překvapivě mnoho společných rysů. Tato studie analyzuje historický vý
voj jazyka té které matematické teorie (algebry, infinitesimálního počtu, případně 
predikátové logiky) a dovozuje, že paradoxy se vyskytují v konkrétní fázi histo-
rického vývoje jazyka. Ukazuje se, že paradoxy jsou projevem expresivní hranice 
jazyka matematiky.

Keywords: paradox ● language of  mathematics 

Probably the first attempt at a systematic interpretation of  the paradoxes in 
exact sciences was Kant’s Critique of  Pure Reason [Kant 1781]. Kant examined 
a range of  issues, such as the question of  the infinity of  the extension of  space 
and time, their divisibility etc. and showed that all efforts to answer them inevitably 
lead to paradoxes. According to Kant the attempts to answer these questions 
lead to paradoxes rising from the fact that reason is thereby exceeding the limits 
of  its competence, which extends only as far as the limits of  possible experience. 
He writes: „… the principles of  pure understanding are only of  empirical but 
never of  transcendental use; and it follows that beyond the realm of  possible 
experience there can be no synthetic a priori principles at all.“ [Kant 1781, p. 312]. 
Kant’s analysis of  the antinomies is significant in several respects. On the one 

hand Kant shows that the antinomies are not accidental mistakes or oversights 
but rather a systematic phenomenon that points toward an important feature of  reason 
itself. „Transcendental appearance, however, does not disappear, even if   it is 
revealed and its nothingness is perfectly recognized by means of  transcendental 
criticism. The reason for this is that our intellect contains the basic rules and 
maxims of  its use, which look just like objective principles, which causes that 
the subjective necessity of  a certain union of  our concepts in favor of  our 
understanding is taken to be an objective necessity determining the things in 
themselves. It’s an illusion, which cannot be avoided...“ [Kant 1781, s. 236].
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In addition, it is interesting that Kant interprets the antinomies as boundary 
phenomena; as a result of  surpassing some boundaries, in this case the boundaries 
of  possible experience. Both of  these characterizations of  antinomies remain 
valid to this day.
Despite these undoubtedly positive insights into the nature of  the paradoxes 

Kant’s theory has also some problematic features. The first is that Kant does not 
consider paradoxes in mathematics but locates them only into physics (the antinomies 
of  pure reason), psychology (transcendental paralogisms) and theology (ideals 
of  pure reason). It is strange, because the work of  George Berkeley The Analyst 
or, a Discourse addressed to an Infidel Mathematician, in which Berkeley points out 
the paradoxes in Newton’s theory of  fluxions and fluent, was published in 1734, 
i.e. almost fifty years before Kant’s Critique of  Pure Reason. Nevertheless, what 
Berkeley actually showed in his book is in many respects analogous to what 
Kant wrote about the antinomies of  pure reason. 

The aim of  the present paper is it to show that paradoxes occur also in mathematics, 
and that the paradoxes in mathematics have both features by means of  which 
Kant characterized the antinomies of  pure reason: they are systematic (i.e. not 
mere mistakes or oversights) and they relate to a boundary (i.e. the same practice 
applied within the boundaries does not lead to paradoxes). The existence of  
paradoxes in mathematics casts a shadow on Kant’s philosophy of  mathematics 
and his interpretation of  the antinomies as resulting from the efforts of  reason 
to surpass the limits of  possible experience. In mathematics it seems more natural 
to see the paradoxes not as a result of  surpassing the limits of  possible experience, 
but the boundaries of  some symbolic language. I will therefore tie paradoxes to 
the boundaries of  language and not the limits of  possible experience. But despite 
this modification, their systematic nature and relation to a boundary remains 
preserved.
So we come to another peculiarity of  Kant’s theory, which is the idea that the 

paradoxes cannot be removed. „Therefore, the dialectical theorem of  pure reason 
must be different from all sophistical sentences that do not concern any questions, 
toss with just any faith but only such, which must necessarily encounter every 
human mind in its thinking; and secondly, this precept with its antithesis not 
only creates unnatural appearances that will disappear as soon as we look into 
it, as well as natural and inevitable appearance that still, even though he is 
no longer subject, confusing, although it does not lie, and which can therefore 
be disposed of  but can never be destroyed .... it must arise contradictions that 
can not be avoided, no matter what we do.“ [Kant 1781, s. 283 a 284]. If  we 
interpret the paradoxes as surpassing the boundaries of  a certain formal language, 
then a reform of  that language can open up a possibility to eliminate the particular 
paradoxes.



How mathematics confronts its paradoxes

PAPERS

251

History of  mathematics provides a wealth of  examples that show how various 
paradoxes appeared in mathematics, and how mathematicians created technical 
means of  defense against them. In the first four chapters I will discuss four 
paradoxes: the incommensurability of  the side and the diagonal of  a square, 
the casus irreducibilis that emerged by solving cubic equations, the paradoxes of  
the infinitesimal calculus and the paradox of  the set of  all sets. In all four cases I will 
try to interpret the paradox as encounters of  the boundaries of  the particular 
symbolic language (of  arithmetic, algebra, the calculus, or set theory respectively) 
and to show how mathematicians dealt with these paradoxes. (A broader historical 
context of  these paradoxes can be found in Kvasz 2008, pp. 11–84.)

1. The boundaries of the language of  
arithmetic–incommensurability  
For a period of  several centuries, the development of  mathematics was confined 
to practical issues of  economics and trade. Therefore the main mathematical 
discipline was arithmetic. The mathematical texts that have survived from ancient 
Egypt and Mesopotamia are collections of  practical problems, together with 
solutions. If  a problem concerns geometry, the text usually lacks any visual image 
and in the rare cases when the image is present, it is not clear what exactly is 
represented. In ancient Greece for the first time we encounter geometrical texts, 
in which the particular geometrical objects have a well defined form and the 
relations among them have the character of  logical necessity. The knowledge of  
geometry was according to tradition brought by Thales and Pythagoras from Egypt. 
Nevertheless, in one aspect Greek mathematics differed substantially from its 
predecessors in ancient Egypt and Mesopotamia; it namely contained the idea 
of  a proof. 
The paradox that I want to discuss here was discovered by the Pythagoreans. 

According to the Pythagorean doctrine the world is a harmony of  opposites, 
and the essence of  this harmony is expressed by numbers. The Pythagoreans 
associated geometry with a strange kind of  “arithmetical atomism”. They assumed 
that every line, thus also the side and diagonal of  a square, are composed of  a 
number of  “units”, and so the ratio of  the lengths of  these lines is equal to the 
ratio of  the number of  “units” that constitute them. In this way the opposites–
the long and the short–are joined in a harmony, expressed in the form of  a 
proportion of  numbers. The discovery of  the incommensurability of  the side 
and the diagonal of  a square, i.e. of  the fact that the ratio of  the lengths of  
these two lines cannot be expressed as a ratio of  two (integer) numbers, contradicts 
the Pythagorean philosophy. The Pythagoreans considered incommensurability 
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a paradox. I suggest that the incommensurability of  the side and the diagonal 
of  a square reveals the boundaries of  the language elementary arithmetic. 
The proof  of  the incommensurability of  the side and the diagonal of  a 

square is based on Pythagoras’ Theorem. Suppose that the side of  the square 
consists of  b units and the diagonal of  a units. From the Pythagorean theorem 
we have a2 = b2 + b2. Thus for the numbers a and b we have 

				    a2  =  2b2.	 	 	 	          (1)
From this relation we see that the diagonal a is greater than the side b, and so 
we can write	  		  a  =  b + c. 	 	 	 	  (a)
The number c is the difference that we get when we subtract from the diagonal a 
the side b. When we substitute this latter relation into the former one, we get

				    (b + c)2  =  2b2.
Using simple transformations we get

				    b2  = 2bc + c2. 	 	 	  	          (2)
This means that the number b2 is greater than 2bc, which means (after dividing the 
two numbers by b), that b is greater than 2c. Therefore, we can write

				    b  =  2c + d,	 	 	 	          (b)
where d is again the difference obtained by subtracting 2c from b.
The reader is probably already getting bored, but now comes the point. When 

we substitute this expression of  the number b into the equation (2) we obtain
					     (2c + d)2  =  2(2c + d)c + c2.

Using a simple multiplication we get
					     4c2 + 4cd + d2  =  4c2 +2cd + c2.

When we subtract from both sides of  the equation the equal terms, we obtain
					     c2  =  2cd + d2.	 	 	      (3)

And we’re done. The Pythagorean doctrine is refuted!!!
Why? We have to realize what we have got. The relation (3) is exactly the 

same as (2), that is, more precisely; the numbers b and c are in the same relation 
as the numbers c and d. Thus, the method of  antiphareisis, as it was called, cannot 
terminate. Remember what we were doing. We have always subtracted from the 
longer segment (single or double) multiple of  the shorter. If  the original segments 
had a common measure s (i.e. if  a = ms  and b = ns) then by repeated subtraction 
of  the shorter segment from a longer one, as we have done it, we would have 
reached the stage when the last difference would be exactly equal to the common 
measure s of  the original segments. But that would mean that the penultimate 
difference would be a multiple of  this last difference s and so no new remainder 
would emerge, and our method would reach its end. Thus the method of  
antiphareisis is a method for finding the common measure of  two segments 
(or  the common divisor of  two numbers, which was for the Pythagoreans 
essentially the same, because they believed that every segment is a number). 
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The discovery of  incommensurability means that the method of  antiphareisis breaks 
down. One of  the pillars on which the Pythagorean theory of  numbers was 
built, collapsed. 

Within the framework of  elementary arithmetic the incommensurability of  
the side and the diagonal of  a square is a paradox that defies comprehension. 
The Pythagoreans called it kai alogon kai aneidon, ineffable and inconceivable. Only 
when in the 17th century mathematicians abandoned the Euclidean definition 
of  number as a multitude of  units and began to consider the real numbers, it 
became possible to turn the incommensurability into the positive fact that 2  
is an irrational number. Here we see one of  the basic strategies of  overcoming 
paradoxes: through extension of  language we turn a paradox into a positive 
fact. In our case, we introduce the number 2  that expresses the length of  the 
diagonal of  the unit square and the paradox is gone. We will meet this strategy 
in the following text several times.

The reader who knows the standard indirect proof  of  the incommensurability 
of  the side and the diagonal that can be written in three lines may ask why 
I instead presented the proof  that uses antiphareisis. The reason is that it is likely 
that this is the form in which incommensurability was originally discovered 
(probably instead of  the square it was with the pentagon). There is also a 
philosophical reason, because the method of  antiphareisis is similar to the form, 
in which Kant presents his antinomies. Here, just like in the case of  extension 
or divisibility of  space we are confronted with the thesis and antithesis, asserting 
that some process will terminate or not.

2. The boundaries of the language  
of algebra–the casus irreducibilis
The reconquista of  Toledo in 1085 opened to the European scholars the 
opportunity to become acquainted with several works of  Greek and Arabic 
mathematics from the Arabic manuscripts. In 1142 Euclid’s Elements have been 
translated into Latin, and in 1145 the Short book on algebra and al-muqábala from 
Abu Abdullah Muhammad ibn Músa al-Chwárizmí. The habit to formulate the 
solution of  a problem in the form of  verbal rules that was so characteristic for 
the work of  al-Chwárizmí lasted well until the 16th century. Thus also the first 
result of  European mathematics that surpassed the knowledge of  the ancient 
world, was written in this form. It was the solution of  the cubic equation, 
published in 1545 in the book Ars Magna Sive de Regulis Algebracis by the Italian 
mathematician Girolamo Cardano.
Cardano formulated the cubic equation as: “De cubo et rebus aequalibus numero” 

where cubo is derived from cubus, meaning the third power of  the unknown; rebus 
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is derived from res, meaning the first power of  the unknown; and numero is 
derived from numerus, meaning is the member. Cardano gives the solution of  
this equation in the form: „Cube one-third of  the number of  things; add to it 
the square of  one-half  of  the number; and take the square root of  the whole. 
You will duplicate this, and to one of  the two you add one-half  the number 
you have already squared and from the other you subtract one-half  the same. 
You will then have binomium and its apotome. Then subtracting the cube root of  
the apotome from the cube root of  the binomium, that which is left is the thing.“
Here “to duplicate” means to write two times the same next to each other 

and the words “binomium” and “apotome” refer to certain algebraic expressions. 
In order to allow the reader to see what Cardano was doing, I write down the equation 
using today’s symbols as  x3 + bx = c and its solution given by the formula:

	      x  =  3

32

3

32

322322






+






+--






+






+

bccbcc .	          (4)

In Cardan’s times there were no formulas and Cardano used exclusively the 
verbal form. He illustrated his general rule on a particular equation x3 + 6x = 
20, the solution of  which he writes as:

„RV: cub: R: 108 p: 10 m: RV: cub: R: 108 m: 10“
where RV is radix universalis; cub indicates that the root is of  the third degree; 
R is radix; p stands for plus; m for minus. Cardano was not able to express the 
coefficients of  the equation in a general form. The formula refers to a solution 
of  a particular equation. In our symbolism it has the form:

108 10 108 103 3+ - - .

On the one hand, the solution of  the cubic equation is a landmark of  the 
development of  European mathematics. Their solution is the first result of  
Western mathematics that surpassed the level of  the ancient heritage. Thus, 
the year 1545 can be seen as the first date when we knew something Euclid, 
Archimedes or Apollonius did not know. On the other hand, the solution of  
the cubic equation led to a paradox. Cardano discovered the paradox by trying 
to solve the equation of  the type “De cubo aequali rebus et numero” what in 
our symbolism means x3 = bx + c. The reason for the need to differentiate 
various types of  equations was that the mathematicians of  the 16th century did 
not know negative numbers. Cardano found for the equation x3 + bx = c a rule 
analogous to the previous ones. I will not present it in its original verbal form, 
but only its transcription into modern symbolism:
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	          x  =  c c b c c b
2 2 3 2 2 3
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.		        (5)

When we compare this formula with the one above, we find that what has 
changed is only that a few occurrences of  + were replaced by – and vice versa. 
So below the square root the sum was replaced by difference. Nevertheless, this 
tiny change has far-reaching consequences. If  we take a particular equation, for 
instance the x3 = 7x + 6, which was considered also by Cardano, we can see, 
that one of  its solution is x = 3 (the other two solutions x = -1 and x = -2 
were not considered in Cardano’s times). However, when we substitute the 
coefficients b = 7 and c = 6 into formula (5), we obtain something 
incomprehensible–below the sign of  the square root a negative number occurs:

33

27
1003

27
1003 --+-+=x .

Cardano called this casus irreducibilis, the unsolvable case. In retrospect, this 
is probably the first complex number in the history of  mathematics. It resembles 
the discovery of  the incommensurability of  the side and the diagonal of  a square. 
In both cases we are confronted with the limits of  language. The language (of  
arithmetic or of  algebra) is faced with a situation in which it fails. In the case of  
the casus irreducibilis some terms arise which, strictly speaking, do not make sense. 
And the therapy is also similar to that in the previous case—we must extend the 
universe of  numbers. When we include complex numbers into our universe, 
the square root of  a negative number will no longer pose any problem, just like after 
including the irrational numbers the 2  posed no problems. For Cardano, however, 
who discovered this paradox, the casus irreducibilis was a mysterious phenomenon, 
and it was necessary to wait almost two hundred years, until complex numbers 
were sufficiently understood so that the square roots of  negative numbers were 
accepted as genuine quantities. (A more detailed reconstruction of  the development 
of  algebra is in Kvasz 2006.)
It seems that also this case can be brought under the umbrella of  Kant’s 

account of  the paradoxes. At least in the period between 1545 (when Cardano 
discovered ‘the first complex number’) and 1799 (when Gauss introduced the 
complex plane) mathematicians were confronted with the irresistible temptation 
to work with complex numbers as if  they were objects (i.e. transcendently real), 
even though they were not able to explain what they really are (i.e. construct 
them within the limits of  possible experience). The appeal of  Gauss’ construction 
of  the complex plane is precisely that it gave complex numbers a model within 
the empirical realm. So we have all the Kantian components of  an antinomy–

2727
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their systematic nature, their relation to some boundary (in this case the boundary 
separating the positive numbers from the negative ones) and their irresistible 
nature.

3. The boundaries of the language of the calculus 
The paradoxes of  differential and integral calculus are in many ways analogous 
to the previous examples. Newton in a letter from 1714 writes: “Fluxions and 
moments are quantities of  different kind. Fluxions are final movements, while 
moments are infinitely small parts. I use letters with dots to indicate fluxions 
and multiply the fluxion with the letter o, to make ​​them infinitely small. In proofs 
of  theorems I always write the letter o, and I proceed by the methods of  Euclid’s 
geometry without any approximations. In calculations I make approximations 
of  the most varied kinds, and sometimes I omit o.”

Newton called fluxion what we now call the derivative of  a function, and 
thus it is a finite quantity that characterizes the speed with which the original 
quantity (that he called fluent) changes. In contrast, he called moment the 
infinitesimal increment of  a quantity, and so it is infinitely small. The moment of  
a quantity ​​(or of  a function or of  a fluent) y is equal to the product  oy  of  its 
fluxion y , which indicates how quickly the quantity y changes in time with the 
infinitely short moment of  time o, during which the moment appeared. As an 
illustration, we can present Newton’s calculation of  the derivative of  the fluent – x3. 
In Newton’s notation this procedure is as follows:

				    y x= 3 	 	 	 	 	          (6)

			   ( )3oxxoyy  +=+
			   oooxxxooxxxoxxxoyy  +++=+ 33 23 	          (7)

We can use (6) to get rid of  the finite terms and then divide both sides by o. 
We thus obtain:

			   ooxxxoxxxxxy  ++= 33 2 	 	 	          (8)

			 



  

y
x

x xxo xxoo= + +3 32 	 	 	          (9)

			   23x
x
y
=




	 	 	 	 	      (10)

In the last step we neglected the infinitely small quantities that contained o. 
Newton thus received the correct result; the derivative of  the function y x= 3  
is indeed y = 3x2.

ooxxxoxxxxxy  ++= 33 2
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The calculation of  the derivative using Leibniz’s notation is practically the 
same. In a letter of  1716 Leibniz wrote: “When our friends in France disputed, 
I testified to them that I do not believe that there actually are some infinitely 
large or infinitely small quantities. The letter d, just like the imaginary roots in 
algebra, are just fiction that, nevertheless, can be used for brevity or when we 
want to speak generally.” The above quotations indicate some doubts of  the 
founders of  the differential and integral calculus according the nature of  quantities, 
which they used in their calculations.
George Berkeley presented a witty criticism of  the differential and integral 

calculus in his book The Analyst, or a discourse addressed to an Infidel Mathematician 
that appeared in Dublin in 1734. In his book Berkeley makes a parody of  Newton’s 
theory of  fluxions and fluents (but all his objections apply with equal force to 
Leibniz’s theory, based on the use of  differentials). Berkeley shows that the calculus 
is based on a logical error. Fortunately, not a single one but on a multitude of  
errors, which compensate each other so that the calculus eventually brings us to the 
correct result. Berkeley here refers to Newton’s method described above, in which 
during the calculation a certain quantity is considered as different from zero, so 
that we could divide by it (in the transition from the line (7) to (8) we divided 
by the quantity o). After the successful completion of  these divisions we put 
this quantity equal to zero (in the transition from the line (9) to (10)). Berkeley 
correctly objects that a variable either is equal to zero, but then it is equal to zero 
throughout the entire calculation and thus it is not possible to divide by it, or it 
is not equal to zero, but then it is not equal to zero throughout the entire calculation 
and so it cannot be ignored at the end. So, according to Berkeley the differential 
calculus is all mistaken. That it, nevertheless, leads to correct results, is possible 
only due to compensation of  errors. 

Berkeley’s criticism of  the differential calculus pointed to the insufficient 
justification of  the formal methods, on which the differential calculus was 
built.  The efforts to create foundations of  the calculus span the entire 18th and 
19th centuries. One of  the most important attempts to build the calculus on solid 
foundations was presented by Augustin Cauchy in his famous Cours de l’Analyse 
from 1821. Cauchy found a way to exclude Newton’s fluxions and Leibniz’s 
differentials from the calculations and to base the entire analysis on the concept 
of  limit. When he tried to justify the concept of  limit, however, Cauchy turned 
to the properties of  the real line. It seems that the criticism presented by 
Berkeley really revealed the boundaries of  the language of  the differential and 
integral calculus, because almost all attempts to answer his criticism turned to 
some other language.
Here we are dealing with a strategy to confront a paradox that is different 

from the strategy adopted in the case of  the incommensurability or the casus 
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irreducibilis. Mathematicians like Cauchy, Bolzano, or Weierstrass have not tried 
to enrich the language of  the differential and integral calculus by some new kind 
of  quantities (even though the strategy of  extending the realm of  numbers was 
eventually also successful, but only in 1962, when Abraham Robinson proposed 
his Nonstandard analysis). Instead of  an extension of  the system of  numbers 
mathematicians shifted the problem of  the foundations of  differential and integral 
calculus on the shoulders of  some other theory–the theory of  real numbers. 
Around 1872 Dedekind, Weierstrass, and Cantor independently proposed a 
construction of  real numbers and started the process of  arithmetization of  
mathematical analysis. The constructions of  Dedekind, Weierstrass, and Cantor, 
however, have one fundamental weakness. They assumed the existence of  an 
actually infinite set of  objects (in Dedekind’s construction it was the set of  
all rational numbers, in the case of  Cantor and Weierstrass it was the set of  all 
sequences of  rational numbers). Even if  the assumption of  the existence of  
all rational numbers seems harmless, some mathematicians considered the problem 
of  grasping an actually infinite set of  objects as not clear enough. 
Therefore Dedekind (1888), Peano (1889) and Frege (1893), again independently, 

offered three alternative constructions of  the system of  all natural numbers as 
the canonical infinite system of  objects. So around 1890 a second shift of  the 
problem of  foundations of  the differential and integral calculus occurred. Now 
the foundation, on which the building of  the mathematical analysis should be 
erected, was arithmetic of  natural numbers. It seemed that this time the work 
started at the beginning of  the century by Cauchy, finally reached its completion, 
and the strategy of  shifting of  the problem of  foundations was crowned with success. 
But suddenly some logical paradoxes emerged and the entire building collapsed. 
It seems that the strategy of  gradual shifting of  the problem of  foundations 

is not as effective in dealing with paradoxes as the strategy of  extending the 
language. However, by each such shifting the problem gets imbedded into a new 
context and so each shift allows its deeper analysis and better understanding. 
From the very beginning it was clear that the problem of  the foundations of  
the calculus has something to do with the infinite, but the successive shifts 
of  the problem clarified in what respect the concept of  infinity is involved in 
the foundations of  the calculus. As many of  the Kantian antinomies were also 
tied to the infinity, I think it is plausible to include also this paradox among 
the examples of  paradoxes in mathematics that illustrate Kant’s notion of  
an antinomy.
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4. Boundaries of the language of predicate calculus 
One of  the first logical paradoxes was discovered in 1901 by Bertrand Russell 
in Frege’s system of  the foundations of  arithmetic from 1893. Frege was 
surprised by the appearance of  a paradox in his theory and pointed out that the 
same paradox occurs also in Dedekind’s system of  the foundations of  arithmetic 
from 1888. This observation of  Frege can be supplemented by a note that the 
same paradox can also be derived in Peano’s system [see Gillies 1982, p. 83–93]. 
This shows that these paradoxes are not the result of  some mistakes made by 
the mentioned authors. Their systems are conceptually so different that the 
occurrence of  the same paradox in all of  them marks rather the logical boundaries 
of  the language of  mathematics. The problem was that all three used quantification 
over classes (i.e. from our point of  view second-order logic). The paradoxes 
arise as a result of  the ‘careless’ use of  second-order quantification.
The simplest formulation of  the paradox that appeared in the works of  Frege, 

Dedekind, and Peano can be given in the language of  set theory. A detailed analysis 
of the paradox can be found in the book [Gillies 1982], where a comparison of  the 
formulations of  the paradox in all three systems is presented. In the language 
of  set theory this paradox is usually formulated as the paradox of  the set of  all sets 
(that do not contain themselves as element). Assume thus that M is a set consisting 
of  all those sets that do not contain themselves as an element. Formally written

				    M = {x;  x∉x}.
Let us ask the question whether the very set M contains itself  as an element? 

We do not know, so let’s consider both alternatives.
Assume that M is its own element, i.e. M∈M. If  M is an element of  the set 

M, it must satisfy the condition that is true of  all elements of  the set M, namely 
that x∉x. When we substitute M for the variable x, we get M∉M. Thus M is 
not the element of  itself, what contradicts the assumption.

Assume therefore that M is not its own element, i.e. M∉M. This means that 
M satisfies the condition by means of  which we determine whether a set belongs 
to M or not, namely the condition x∉x. Given that M satisfies this condition, 
it must be included in M, because M contains all the sets that satisfy this condition, 
and thus we obtain that M∈M, what contradicts what we have assumed.

We see that whether we assume of  set M that it is an element of  itself  or 
not, in both cases we obtain a contradiction. This paradox may at first glance 
seem an artificial trick. It may seem that the set M was created just to construct 
the paradox, but no one would ever dream of  doing such a thing. Nevertheless, 
this impression is wrong. Russell found this paradox in the system of  Frege, 
and Frege found in the system of  Dedekind, and finally it turned out that 
it occurs also in the system of  Peano. Thus it is not an artificial trick, but 
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a consequence of  the fundamental principles on which the foundations of  
arithmetic proposed by the three mentioned mathematicians were built.
The logical paradoxes are interesting because in their overcoming we can find 

a third strategy of  dealing with a paradox. Besides the strategy of  language extension, 
used in the case of  the incommensurability and the casus irreducibilis, leading to the 
introduction of  the irrational and the complex numbers, and the strategy of  shifting 
the problem that was used in the case of  the calculus, where the problems concerning 
the infinitely small quantities were gradually moved into arithmetic, here we are 
dealing with something that can be described as the strategy of  suppressing the paradox. 
The first version of  this strategy was presented in 1908 by Ernst Zermelo, who 
created the first axiomatic system of  set theory. In building his system Zermelo 
restricted the language of  set theory so that sets similar to the set M could not 
be defined in the language. It is a kind of  political correctness where we believe 
that a problem disappears when the language does not enable its formulation. 

5. Concluding remarks
As a first interesting result of  our analysis we can take the discrimination of  
three strategies how mathematicians respond to paradoxes: the strategy of language 
extension, the strategy of shifting the problem, and the strategy of suppressing the paradox. 
In the last one it is not difficult to recognize Lakatos’ monster barring and 
exception barring method. Nevertheless, it seems that the other two strategies 
were not analyzed by Lakatos. So it could be interesting to confront the Kantian 
theory of  antinomies with the Lakatosian theory of  Proofs and Refutations (for 
more details see Kvasz 2002).
As I said at the beginning, according to Kant there is a fundamental difference 

between mathematics and physics consisting in the fact that there are no paradoxes 
in mathematics, while in physics their occurrence cannot be avoided. I assume that 
the above text casts doubt on this view. It shows that mathematics is exposed 
to paradoxes to at least the same extent as physics. It is an open question whether 
the paradoxes that I have described in previous chapters can be interpreted 
as phenomena analogous to the Kantian antinomies. I believe they can. In all 
above mentioned paradoxes we could find those features, by means of  which 
Kant characterized his antinomies, namely their systematic nature and that on 
the road towards the paradox certain rule that works well in a limited area (of  
possible experience), was used in an unlimited way. The tendency to use the 
rule for the cubic equation of  the kind Cubo aequali rebus et numero in all cases, or to 
apply the rules of  quantification also to classes, lies in the nature of  reason itself. 
It is the tendency to pass from the conditional to the unconditional, on which 
Kant bases his analysis of  the antinomies. 
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So it seems that there is a problem within Kant’s philosophy of  mathematics. 
I believe that if  we stop separating mathematics from physics as Kant did and 
start to base its philosophy on language instead of  perception, it will be possible to 
preserve several of  the insights by which Kant enriched the philosophy of  exact 
sciences. Mathematics can be thus incorporated into his analysis of  antinomies of 
pure reason. For an orthodox Kantian such an approach is probably unacceptable, 
but it is questionable whether making Kant’s philosophy a sterile corpse exposed 
in the showcases of  the museum of  the history of  Western thought is the only 
way how to deal with it.
Another question of  wider significance is the problem that according to 

Kant the antinomies belong to the very nature of  reason and thus they cannot 
be removed. As shown by the development of  physics the antinomies can indeed 
be removed. Let us take for example the antinomy of  finiteness versus infinity of  
space. General theory of  relativity eliminated this antinomy when it replaced the 
Euclidean space of  Newtonian physics by the curved space-time. For general 
theory of  relativity Kant’s antinomy does not work; the question whether space 
is finite or infinite is not a speculative problem. It is an empirical question that 
depends on the distribution of  matter in the universe. 
Nevertheless, Kant’s antinomies do not lose their significance. They should 

be qualified with respect to the language of  the theory in which the antinomy 
is formulated. Thus I suggest interpreting the antinomy of  finiteness versus 
infinity of  space as pointing to the external character of  space in Newtonian physics 
(that was first noticed by Mach). This antinomy is thus not a characteristic feature 
of  human reason, but of  language. And not of  language as such, but of  the 
language of  Newtonian mechanics. The antinomy of  finiteness versus infinity 
of  space can be therefore interpreted as an indication of  the boundaries of  the 
language of  Newtonian physics (for more details see Kvasz 2013). This is actually 
the form in which I described all the paradoxes in mathematics. And in this 
form Kant’s antinomy of  finiteness versus infinity of  space retains its validity 
and tells something fundamental about the nature of  Newtonian physics.
Of  course, for Kant Newtonian physics was the only physics that he knew, 

and so the boundaries of  its language appeared to him as limits of  physics as 
such, and actually as limits of  the human reason. As we today have a number 
of  fundamental physical theories (such as the theory of  relativity or quantum 
mechanics), it is easier for us to see that the antinomies studied by Kant are in 
fact related to one specific theory, namely Newtonian mechanics and thus they 
have nothing to do with reason as such. And physics faces these antinomies in 
very the way as mathematics (described in the previous chapters), namely with 
a change of  language.
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Summary
Paradoxes in mathematics such as the casus irreducibilis [Cardano 1545], the 
paradoxes of  the calculus [Berkeley 1734] or Russell’s paradox [Russell 1903] 
show surprisingly many common features. It is possible to see these paradoxes 
as linguistic phenomena occurring at a specific stage in the development of  the 
particular theory. It seems that even though each paradox taken in isolation is 
well understood, the paradoxes as a general phenomenon still lack sufficient 
historical analysis. The paper analyzes the historical development of  the language 
of  the particular mathematical theory (i.e., algebra, calculus, and predicate logic, 
respectively) and argues that the paradoxes occur at a particular phase of  the 
historical development of  the language; it characterizes that stage as the stage 
when in the language we begin to construct representations of  representations. 
It argues that the paradoxes exhibit the expressive boundaries of  the language 
of  mathematics as introduced in [Kvasz 2008]. That is why these paradoxes 
exhibit several common features–they correspond to the same epistemological 
phenomenon, namely expressive boundaries of  language.
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Resumé
Paradoxy v matematice jako casus irreducibilis [Cardano 1545], paradoxy infinitesi
málního počtu [Berkeley 1734] nebo Russellův paradox [Russell 1903] vykazují 
překvapivě mnoho společných rysů. Je možné na ně nahlížet jako na lingvistic-
ké fenomény vyskytující se v určitém stavu vývoje konkrétní teorie. I když je 
každý výše uvedený paradox sám o sobě dobře prostudován, paradoxy jako 
obecný fenomén stále postrádají dostatečnou historickou analýzu. Tato studie 
analyzuje historický vývoj jazyka té které matematické teorie (algebry, infinite-
simálního počtu, případně predikátové logiky) a dovozuje, že paradoxy se vy-
skytují v konkrétní fázi historického vývoje jazyka; charakterizuje tuto fázi jako 
takovou, v níž v jazyce začínáme vytvářet reprezentace reprezentací. Ukazuje 
se, že paradoxy jsou projevem expresivní hranice jazyka matematiky, zavedené 
v [Kvasz 2008]. Proto paradoxy vykazují společné rysy – korespondují s týmž 
epistemologickým fenoménem, především s expresivními hranicemi jazyka.
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